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In the present paper we study the development of convective instability in a horizontal
fluid layer, leading to formation of hexagonal cells when the parameters are subject to some
constraints. In eddition we investigate the stability of the steady convective flows.

We know [1] that hexagonal convective cellse may appear when a horizontal fluid layer
is heated from below. It was shown however {2 to 9] that the hexagonal shape of the cells
is not unique. In the recent years [5 to 8] it was found that the stability of convection with
hexagonal cells depends on the effects, which are not taken into account when the convec-
tion is described in the usual manner [2 to 4 and 9 to 11}, i.e. when the transport coeffici-
ents are temperature independent while the compressibility term appears in the equation of
motion as a coefficient of volume expansion. In spite of the progress made it is still un-
clear, in what manner the processes of interaction of a large number of cumultative pertur-
bations lead to formation of a periodic hexagonal structure and it is these processe, that
we shall consider below.

1. When a fluid layer is heated from below, an equilibrium state can be reached in
which the fluid is at rest, while the temperature, density and other hydrodynamic variables
depend only on the vertical z-coordinate. This state may be unstable. In this case the de-
viation X of the hydrodynamic variables from their equilibrium values is given by [12]

X = g Yetr Y = QZ 4+ N Zy (k1 Fa) Q (k) Q (ka) + . . . (1.1)

dQ /dt = 7Q + 3 i, (hy, ks) Q (kr) Q () -
+SVH (ky, ke ) Q (k) Q (k) Q (k) 4 ..oy Q6= 0) =ed (k) (1.2)

where k and r denote two-dimensional horizontal vectors. The wave vectors k;, ..., kn
appearing in the sums of order n in amplitude Q, satisfy the condition k, + ... + k, = k.

We assume that the thickness of the layer is small compared with its horizontal di-
mension [, therefore the boundedness of the layer in the horizontal direction is only reflected
in the fact that the components of the wave vector k assumed discrete values 27n/l (n =0,
1, ...). All functions of the wave numbers are symmetrical in k and become the corres-
ponding complex conjugates on changing the signs of k. Coefficients y and H depend on
the parameters A, while the coefficients Z depend, in addition, on the vertical coordinate.
The amplitude £ of the initial perturbation is assumed to be sufficiently small.

A simple example of computing # and Z is given in the Appendix. More complicated
examples are given in {5 w91, although in theae cases some restrictions are imposed on
the v- Ines of the wave vectors. In all these examples the magnitudes y and H are real,
therewre in the following we shall assume that the properties of the systems in question
are all real. We shall later show that for such a system Egq. (1.2) has a large number of
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Processes of formation of hexagonal convective cells 235

the steady state, time-independent solutions, and that each such solution will describe
some convective motion.

The rotational symmetry of the problem implies that the increment of the camulative
perturbations is y = y (|4]). At the critical value of A = As, v =0 only for these pertarba-
tions, for which rkl = ks. The wave vectors of such perturbations differ from each other
only in the value ofA the polar angle @

Q= 2%gn /| N (n==0,,..., 6N, 6N =k,

In the following we shall assume that the number of perturbations is 6N 1.

Let us now suppose that the supercriticality is so small, that the increments y of the
perturbations which have |k| = ke are much smaller than the decrements of those perturba-

tions for which |k| £ ks .
1< @r/ I |77 (kyy L) (1.3)

Then (1.2) can be reduced to an equation expressing the amplitude of the cumulative
perturbations (whose wave vectors differ from each other only in the values of the polar
angle ), while the amplitudes of those perturbations for which |k| # ke can be expressed
as functions of the amplitude of the cumulative perturbations

Q (ot ke = HEIIIRELE) o b hieny (D)
Q(0) = = 2 H: (s — B g ()
S=0 +a@+0-—Q§b(w. ¢) 7 (9") (1.5)
Q (9 +n)=Q(9), =Q0, a=2H,(k, k)
T

Here and in the following we use the abbreviationf: ((P) = f (‘P =+ % ﬂ),and the
summation is performed over all U < @ < 21t. Moduli of the wave vectors appearing in
the right-hand sides of (1.4) and (1.5) are all equal to ke, and the last term in the expres-
sion for b should be omitted when ¢’ = @, ¢ + 15 o,

Since no direction is preferred in the system, we find that a is independent of @,
while b = b (¢ — @’). Moreover, the coefficient b satiafies

b@W) =b(—%) =0b(n+ty) (1.6)
Indeed, each term
b(2—9)0(9)q(¥) (1.7
describes the interaction of three perturbations whose wave vectors have equal moduli and
whose sum. is equal to the given vector. Such three vectors are completely characterized
by the acute angle i between the given vector and the straight line containing the remain-
ing two vectors.
This angle has the same value forp — ¢'= - Y = 1 - 1P, therefore the corres-
ponding terms of (1.7) should coincide when Q () = const.
The convection with hexagonal cells is described by the steady state solutions of (1.5)

in which six symmetrically distributed perturbations have amplitudes of equal moduli, while
the amplitudes of the remaining perturbations are equal to zero. When

[}
a>0, Bo = 2 b(Y/5mi)>0
§==1
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then one these solutions is
Q(Ysmi) =Yy(a+Va*+4rB)/ By (i=1,...,6) (1.8)

In order to have the steady state amplitudes small, we must assume y and a smail
(although their ratio may be arbitrary).

The increment y is small near the boundary of stability. Under the laboratory condi-
tions the value of a is also small {5 to 8], since H, £ 0 only when the small magnitade
effects (compressibility and the dependence of the transport coefficients on temperature)
which are usually neglected [2 to 4 and 9 to 11], are taken into account. Since H, is small,
we can assume in (1.5) that b = — 6H,.

The process of formation of the cellular convection has two distinct stages. During
the first stage the cubic term in (1.5) is small, since the initial amplitude & is small.
Quadratic term describes the interaction of six, symmetrically distributed perturbations.
The amplitudes of each group of six become infinite after a finite period of time, the
period being determined by the form and amplitude of the initial perturbation (1.2) (in
which |k| = k). This interaction results in the appearance of six peaks on the functions
q (), and their distribution is determined by the form 4 ().

In the second stage the cubic term is important. When b > 0, it restricts the growth of
the perturbations, retaining in each peal only one perturbation with the maximum amplitude.

2. Using the variables
Q —_:ReYt, T :Y—l(e‘(t___i) (2.1)

we can write the problem (1.5) and (1.2) as

d
- =aRR.—(1+ TR0 —¢) 7 (¢) (r=RE, Ro=cA(q) (2.2)

When € + 0, the cubic term in (2.2) can be neglected for sufficiently small T, and the
resulting problem has an exact solution. For the magnitudes

D=a(RR.R), E='(D—D), F=y(D+D), S=YYs(r+r.+r),
P=Ys(rr,+ror+rr) (2.3)
we can easily obtain, from (1.5), the following relation (a prime denotes a derivative in T
RR' =D, D’ =3a°P, E =1'ydIn(R/R)/dT = E, (2.4)
r—ro=38—38, & =2F, F =3P, P =4SF
The subscript zero means that the relevant maguitude is taken at T = 0. Eqa. (2.4)

have the following integrals

T

9=a R:l.,l ._}.t_.-: -.v-_iz_
rg /- n ﬁ 90 *‘Eosr(‘r)

0

S — P = (51— P)y = S,

Thus the system (2.4) can be reduced to
S8 =2F, F' =3a%(5*— 8.%) (2.5)

Fig. 1 shows the phase plane of the system (2.5). Arrows denote the direction of
motion and we see that the phase curves are symmetrical with respect to the S-axis.
The integral of (2.5) can conveniently be written as
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Fig. 1
FA(S, 8,)) = a2 (S — S )(S* + 88, + Sp? — 38,
Fo=F(So, Sn)r  Fy=F (S0 8,) (2.6)

Obviously, the magnitudes S and r are non-negative for any 7. This means that (Fig. 1)
we have

F,2— F >0, min(r, 7, r o+ Sp— S >0

for any initial conditions.

We shall give one of the direct proofs of the above inequalities in the Appendix.
Solution of {2.5) and (2.6) is given by

8
ds
S) = -
R s, V=SS + 580+ Sm® — 35,9 @n

When S 2 S,, it has the form

J(S)F J(So) = 2]a|T 2.8)
where the upper sign is used when Fo> 0, and the lower sign— when Fq <0.

The value of S becomes infinite after the time 7', = T (S = o0) ~ 1/ | ae].
When Too— T are small, (2.7) and (2.8) yield

2{aI(Tm~T)=J(ao)--J(S)=~—‘-%;~{1+0(%)] 2.9

r=8=a*Teo—T)?, F=0%Te—T)?
Behavior of the amplitude g depends essentially on the sign of V¥ =1 + T,

A+1TPr(—1/7) (T—>—1/1,V<0)
g={ W/ /(T —TP (T>Ty, V>0
1t/ at (T—-T,, V=0)

The magnitudes F, S, P. T,, introduced above are 1/3 m-periodic functions of @.
Let us now assume that the form of the initial deviation 4 (@) is such, that the time T, (P)
on the intarvnlO‘{ @ < 1/3 v, attaine its minimum value Ts at an unique point Qus
then. for small Ts — T, the function r (¢) will have six sharp maxima st the points
9= P+ 1y (i =0, ..., 5). The smplitude ¢ (@) will also exhibit such maxima, provided
that Ve = 1 +y Ta > 0 (when Va <0, all perturbations cease at large 1),

3. Under certain conditions (defined in this section) a characteristic time T, exists, at

which the function g () has already formed sharp peaks, while the cubic term in (2.2) is
still small.
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The width A of the peaks is given by

6r A = _331\7 Ira=\r(e)de,  re=7(9,) (3.1)
0
When T —Ta, (3.1) and (2.9) yield
an o9
1 .o T,., -7 2~ I/gq)?‘T*' -2 _ T‘, _T Yy
A= “é‘kp(rm—r) =~ ‘ dy 1 "‘T.TZT) = (37 .'—) (3.2)

The peaks appear sharp when A < 27. We shall use 3.3)

25@—¢)r (@) =B@)7rd =YB(@)Zr, B(g)= X b(Vsmi +¢—q,)

=1

to estimate the cubic term in (2.2). The accuracy of this equation is inversely proportional
to A. The cubic term restricts the growth of perturbations, provided that B (@) > 0. Taking
this term into account we can obtain from (2.2) and (3.3)

r=2F—21-+ yT) rr,B ()A (3.4)

which, together with (2.9), implies that when ¢p = @, , then the cubic terms is small com-
pared with its derivative, provided that

AT >V B/ (@'T,), By = B(9x) (3.5)

The characteristic time Ty mentioned above exists, .if

VuB 1 (@’ T ) A (T (3.6)
When y>0 and7,” ~ T, ~1 /| ae | the inequalities (3.6) hold, provided that
each of the magnitades

B.e/|al, B, /a®

is small compared with unity; if y <0, then the assumption that the sum of these mag-
nitude is small, suffices.

4. Let the inequalities (3.6) hold. Then we find, that when ¢ > tg = In (1 +¥7T0) /y,
Eq. (1.5) becomes {with (3.3) taken into account)

dQ/dt =TQ +af.0-,  T'=71—YB(s)q (4.1)
Its solation is expressed in the terms of the following functions:

t t

U= exp§1‘ ¢, @)dt,  v=To+ §Udt (4.2)

which themselves constitute a solation of the following problem
dU/dt =UT, dvjdt=1U, U() =1, t()=T, (4.3)

From (4.1) and (4.2) it follows that R = Q/U satisfies Eq. dR/d = aR R_, whose
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solution was discussed in Section 8. According to (2.9) we have, for ® = @,

FU3=y*la?, q=Ur=1y2]a? y=U/[(To—r1) (4.4

From (4.3) we have

(4.5)
dy/di =y + 4%, y(te) =1/(Teo— To), I =1 —V/sB3 () Wy /a2, 1V, = Zy™

The amplitude Q can be found if W, (¢} is known. To obtain it, we shall multiply (4.5)
bymy™-1 and sum the result over all ¢

dW, /dt = m(T W, + Waiy) (m=2,...,M—1) (4.6)
Here we have utilised the relation
STy™ =T, W, (4.7}

which holds for at least small values of ¢ — t, when the peeks on the function y are suf-
ficiently sharp. At any ¥ we find that the number of equations in (4.6) is one less than the
number of the unknowns. Thus the system (4.6) together with (4.5) becomes a closed one
for ¢ = @, provided that we set the value of M sufficiently largc and put Wy, = ye ¥,

Egs. (4.6) and their initial conditions are, together, equivalent to the problem (4.3) in
which B is independent of ¢ and equal to Be. Solutior /», 7# = T of this problem can be
found directly.

Relations (4.3) and (4.4) yield

au, . B2 _s
“ﬁ“’“"l*:'l"' ‘"‘:,-’,;:*'Z}(Toc"”T)' (4.8)
For y = 0 the solation becomes
1 ., B, -—‘( 1 1
=@ Ao o) (esT<T

from which it follows that whea T+ T,
Uy=u(To—=T)A+OUT,— TP/ (Ty—T,)]}, u=2a*/B,,
Ty = min Ty (¢, + s/ N) (4.9)
When y % 0, the asymptotic solution has, as before, the form (4.9), but u is give : by
u="01+VI+4&B,/a)a/B,
Relations (4.3), (4.4) and (4.9) readily yield
[Qel—ullal, FUL—u?/a® s T-—>T, (4.10)
From (2.3) it follows that
FU,—acos(0+ 0, +6.), (u/lal
which, together with (4.10), implies that
cos(0+40,460.), —a/la| (4.11)
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Thus, in the steady state, the phases of the amplitudes Q become partly correlated,
while their exact value can be found from the inftial conditions and are given by the expres-
sion for @ (see above).

The angle P4 together with three phases & in (4.11) define the orientation of the
hexagons relative to the initial coordinate system (on which the initial deviation was given).
This system can be rotated and translated in the horizontal plane in such a manner,

that the coordinate origin will coincide with the center of one of the hexagons, and one of
the horizontal axeas will pass through two vertices of this hexagon. Rotation will be defined
by the angle ¢,, while the translation will be given by three phases satisfying the relation
(4.11). As expected, the orientation of the hexagons is determined by the form of the initial
deviation.

Evolation of the perturbations with ¢ == 4 can be described by the relations (4.4)
and (4.2) in which W, (1) is obtained from (4.3) and (4.8)

T
W, _ y—dU,/dT S ar =t —t (4.12)

6a® B, ' p U, (T)

Relations (4.2) and (4.12) yield

t
U — B — tW1-B/B,
E})‘, t) — exp (43'(6112 B QIVQ dt) — (exp T[/(i IO))

By (4.4), all perturbations with ¢ == @,

(9, ) =To+ { U (g, )dt < 7oy (g) (4.13)

~

As t + 0, we have
Ty—T—e, U —>uB/B.exp(— ut [1 — (B, — B)u/a?)

Therefore the sufficient condition for (4.13) to hold is, that the expression within the
square brackets is positive for any (. At the same time (4.13) will hold, if the form of the
initial deviation is such, that the minimum T, at the point @ is sufficiently sharp. If the
condition (4.13) is violated, then at sufficiently large ¢ the relations (4.7) and (4.8) cease
ta hold since additional sextuple peaks whose amplitudes are comparable with the ampli-
tudes of the fundamental set of peaks, begin to appear on the function g (). The resulting
steady state of the system will have several sextuple amplitudes different from zero, and
in accordance with (4.4) we may expect that each sextuple set will have equal amplitudes
and that F > 0.

5. When considering the formation processes, we have imposed strong constraints
(3.6) on the parameters of the system. The steady state may also be stable under the
weaker constraints. In order to determine them, we shall investigate the stability of the
symmetric, steady solutions of (1.5). In such solutions, the only amplitudes different from
zero, are

Qg + in/n) (t=1,..,2n, 0321 (5.1)

Solutions (5.1) in which only the angle ¢, and the phases of the amplitudes ( are dif-
ferent, are physically indistinguishable, therefore in the following we shall assume that
Po = 0 and, that the amplitudes Q are real. It can be assumed without loss of generality
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that in (1.5) 6 > 0 and, that the steady-state amplitudes are positive (if a <0, then in ac-
cordance with {(4.11) we can assume that when n/3 the amplitudes (5.1) is an integer, for
which i/3 are integers, are negative). Henceforth we shall only consider those steady states,
which can be stable.

The following notation is used in investigating the stability of (5.1):

an
1
R, (@)= ;—}l B{o4-in/ny. Bp=B,(0), ap=B,{*) hy = i V‘Tm‘i

From (1.6} it follows that
o
By (@) =Bp(— @)= Bp(a/n -1 @) ==2n E bnn cOS 2 ming (5.2)
m=o
which, after puttiug n = 1, yields the relations for b = %B,. Conditions of stability depend,
essentially, on the divisibility of n by 3. Let us suppose that n is not divisible by 3; then

in the steady-state the quadratic term in (1.5) vanishes and we have the following expres-
sion for the steady state amplitudes Q..

Qo=V7/B. (r=>0. B>0) (5.3)
Infinitesimal perturbations Q () of the steady state solution {5.1) end (5.3) satisfy
Q =0Qgq B, — By). @ Fixja, infnd-*ax (5.4

which is obtained by linearising (1.5) in (), and which yields one of the conditions of
stability

Bn < Bal(®) (@Fix/n, iafn - *47) GR

=1
i}
et

Perturbations O = Q (in/ n + %/, n) satisfy Eq.
Qt'=r0:t 4+ 2QeQ — 2,0 .

Adding and substracting these equations we obtain the additional conditions of
stability

T — Qo -+ aQO <0, v/ a? >Bn /(2n - Bn)g (5-6)
Equations for the pertubations Q; == @ (in / n) have the form
n .7
w=—2q bysi (A<IKA), by=b =N/ =bji_j n= b yijin
fax1

from which it follows that the steady-state solution is table, if all roots A of Eq.
. Dn = I ;"Sij »5* bi J l =0 (58)
are negative.

Each row of the determinant {5.8) is the same cyclic permutation of the one above
(such determinant is of the circulant type).

The circulant type determinant D, whose first row elements are a,,..., 8,, is equal to

[13]
fe)/E®... /ey U(x)=a; {- ez 4 . . .| a,07=1, e__.__ezuiln)
For the determinant (5.8) we have
n
. Q U o 2nms .
fe™) =1 Z-i b (;) cos T =2+ p(m, n) (5.9)

Since p (m, n) = p (n — m, n), the stability conditions are

plm, 1) >0 (@< mY, n) (.10
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When » is lazge, the Fourier expansion (8.2) may be limited to its first two terms,
while the sum in (5.9) can be replaced by an integral; the condjtions (5.5), (5.6) and (5.10)
will then become

by <0, Y/a*>2b/(nby%); b, >0, 0KmLYon (5.11)

Since the first and third condition have an opposing sense, it follows that the number
of stable solutions is finite for any functions b (¢). In particular, i1f b (¢) > b (0), then the
conditions (5.5) and (5.10) hold [9] only for the solution with n = 1.

The second condition of (5.11) shows that the region of stability decreases with in-
creasing n (since the Fourler coefficients bu decrease faster than 1/n).

For the steady-state solutions (5.1) in which the number is equal to 3n, the quadratic
term in (1.5) is different from zero and

Qo= %a / (hn3sn) (hp < 1, Bsn > 0) (5.12)
Perturbation Eq. has the form
Q= 0Q (v — Qu*Ba)
This yields one of the stability conditions

2hy, > 1 — BanfBa, (5.13)
Perturbations Q; = Q (Y/; in / n) satisfy

n
Qr=2aQo(~ Q-+ 0,4 Qs— QD Xiby;  (1<ibn (5.14)
j=1
L= L
4=Q+0%  by=b(zai—nin)
from which we have
3n
Ty=aQo($i—2X)—4Qa° Y, Xjbijy  S=(X+X,+ X (5.15)
=1
From this we obtain, for S
n
Sy=10QeS; —20Q¢* 3 B;;S; (i=1,...,n) Bjj= By (Yan(i—j)/n)

j=1

Solution of this equation will decay, if the roots A of

[(A —12a/Qo) 8+ Byjl =0 (5.16)
are negative.
The determinant (5.16) is a circulant, consequently the additional stability conditions
are obtained in the form

n
hn<g_(_giﬂ (1<m<_1_n). 6 (m, n)::z B, (;i)cos _?lﬂ*_ (5.17)
an - —1 \on n

If they are satisfied, then in (5.15) S + 0 atlarge ¢. The magnitudes X decay, if the roots
A of
(A < Ysa/ Qo) 8y + By =0 (i,1=1,..., 3n) (5.18)
are negative.

The determinant (5.18) is a circulant and the additional stability conditions have the
form
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hy>—p(m3n)/By, (ASm< ) (5.19)
Equations for Y; = @; — 61 do not lead to sdditional stability conditions. Their
solution

Yi (1) = Y0)— s [1 — exp (— 3aQu)][Y(0)+ Y (0)+ Y _(O)k

shows that as ¢ » oo, the phase perturbations do not venish althongh (4.11) hold for each
set of six.

At large a the conditions (5.12), (5.13), (5.17) and {5.19) can be expressed in terms of
the coefficients appearing in (5.2)

Byp =600y >0 (0L hn <1 260, > b;m + (b |
2ok, <L by, (1 m Von), dboh, >—b (1 <m<3en)

and it follows from these conditions, the: the necessary condition for stability is, that

by >0, -
" Hexagonal convective cells are stable, if (-20)

Bs=26(0) -+ 4b (Y3 M) >0, By > by n)—b(0), I >k >, (- minBy/f)
(all these conditions except the last one, were obtained earlier in (sD.

In the actual problems [9] (see also the Appendix) b (§) > 0, therefore the region of
stability exists on the axis y/a?.

6 .The steady state solutions of (1.5) are, in general, nonsymmetric. They consist of
m sets of six and n (not included in the six-sets) pairs of positive amplitudes, and within
each six-set the amplitudes are equal to each other, while the angles §i,for which (; =Q () >0,
are not proportional to i. The condition @; > 0 imposes a restriction on the possible values
of ;.

Conditions of stability of the nonsymmetric solutions are obtained in the same manner
as the corresponding conditions for the symmetric solutions. For example, instead of (5.5)
we can find

ém+2n
B(g) = E b(q)'“q’j)q,'>b’(q..)

=1

where ¢; characterized the steady state amplitudes appearing in n pairs. Similarly we can
find the analogs of {5.6) and (5.13) by considering the perturbations Q{7 =+ ¢y} . We find
that the matrix | & (@i — @;} | in the equations describing the perturbations Q {(¢i) is sym-
metric, but not circulant; therefore the corresponding stability conditions cannot be obtained
explicitly for every n and m.

When discussing the formation processes we noted, that the nonsymmetric solutions
may be obtained when the initial perturbation is of the suitable form (when the function
709 (§) introduced above has a weak minimum). It may also occur, when min Ty, occurs at
two distinct points

Finally we note, that in deriving (1.5) we have utilised the fact that the fluid layer is
bounded in the horizonta] directions, although the restriction (1.3) imposed on the super-
criticality is not essential ¢ == g, 4- 41 / N).

In general we shall assume that the wave vectors appearing in the right-hand sides of
(1.4) and (1.5) have their moduli equal to that value of ko (A), for which y is maximum. It
may happen that the denominator in {1.4) may become zero at some particular values of A.

In this case we may expect [12] that a steady-state motion will be set up in the system,
with the wave vectors whose moduli will differ from each other by about 1/1,

In the limit, as { + o0, solution of the system (1.1) and (1.2) may be sought in the form

of a series in € with subsequent summation of the asymptotic (at large ) terms of the series

[12].



244 lu. B. Ponomarenko

Appendix. As an example we shall obtain (1.1) and (1.2) for a simple model
problem [6].

a ez ag 3 a‘! 1 33X"
[ — (Gt 5) Fhgr —oweoss| x4 3 T =0

or®
X=0°X/0-2=-8'X/322=0 when z=0, n (A1)
where v is a small parameter. Inserting (1.1) into (A1) we obtain
Y — LY 4 122 (Y1Ya)” = 0, Yi==Y (k) (A2
L=Ak?4 (02702 —k%)* - 2vcosz (k1 ko == k)

Here the dot denotes differentiation with respect to ¢, while the dash — différentiation
with respect to z.

Boundary conditions for Y are the same as those for X.

Equations for y, H, and Z, are obtained by inserting (1.1) and (1.2} into (A2),
writing the result as a series in @ of the type of (1.1), and equating to zero the coefficients
of like Q in the sums. Boundary conditions for Zn are the same as those for X.

Equation for y and Z has the form

YZ — LZ ==

For the unstable branch we have

Z =sin z 4 v K sin 2z +4- 0 () (A.3)
Yo=K — (1 -+ A2® + O (v¥), KV = (4 -+ &P — (1 + k2

At some kg (A), the increment will assume its maximum value Yo. With small super-
criticality A =) — 27/, we have

lkol=(141)A)/ V2, =1aA — 9 (| k| — ko) (A4)
Equation for Z, has the form
(Yot Ve—L)Zy== — ZH, -+ 2sin2z— Y v (K + Ky) (sinz — 27s8in 32) + O (v} = W

(ki-Fka==ky Yi==71(ki), Ki=K(ky)

A solution exists for any k, if

dZZly = U

Dt

This, together with (A3), yields
Hy = —1v (K1 - K2 — 8K) -} O (v¥), =k +k (A.5)
Zy == 2V sin 2z |- O (v), V= 9y 4 Y2 — A2 - (4 4 k79
When determining Z,, we can assume that ¥ = 0. The corresponding equation has the
the form
(ot va b va—L) Zy= — Ve [V(ky, ko) TV (ks k) + V (ky k) -+
-+ 6H,) (sinz — 27 sin3z) — 27 H, sin3z (ky + ky -+ kg = k)

To find Hy we must equate to zero the expression within the square brackets. This,
together with (1.4) and (A3) to (A5) will yield, with the accuracy up to the terms

K = 4/351, a= 3vk
b — 1 + 1 1 .
T T Bt =Y, o) + G—cF—, (10" ¢ == ¢os (@ — @)
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Function b (¢) is even and satisfies (1.6). Since b > 0 we find, in accordance with
(5.20), that a region of stability of hexagonal cells exists.

In Section 3 we used physical considerations to derive less obvious inequalities. It
is sufficient to prove them for Fg? = {rr,r_ ), rp = 1. When proving the first inequality
we find it convenient to assume, that 0 < ri. {1 (in the second inequality ry > 1)
is more convenient).

It appears that the symmetric fanctions of the arguments ry (which are shown to be
nonnegative) can exhibit extrema only on the straight line Ty =r_ ., After that we confirm
that the inequalities hold on this straight lines as well as on the boundary of the region
of variation of ry .
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